Comparative Proteomic Analysis of Labellum and Inner Lateral Petals in Cymbidium ensifolium Flowers

نویسندگان

  • Xiaobai Li
  • Weiwei Xu
  • Moytri Roy Chowdhury
  • Feng Jin
چکیده

The labellum in orchids shares homology with the inner lateral petals of the flower. The labellum is a modified petal and often distinguished from other petals and sepals due to its large size and irregular shape. Herein, we combined two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time of flight/time of flight (MALDI-TOF/TOF) approaches to identify the differentially expressed proteome between labellum and inner lateral petal in one of Orchid species (C. ensifolium). A total of 30 protein spots were identified, which showed more than a two-fold significant difference (p<0.05) in their expression. Compared with C. ensifolium transcriptome (sequenced in house), 21 proteins matched the translated nucleotide. The proteins identified were classified into 48 categories according to gene ontology (GO). Additionally, these proteins were involved in 18 pathways and 9 possible protein-protein interactions. Serine carboxypeptidase and beta-glucosidase were involved in the phenylpropanoid pathway, which could regulate biosynthesis of floral scent components. Malate dehydrogenase (maeB) and triosephosphate isomerase (TPI) in carbon fixation pathway could regulate the energy metabolism. Xyloglucan endotransglucosylase/hydrolase (XET/XTH) could promote cell wall formation and aid the petal's morphogenesis. The identification of such differentially expressed proteins provides new targets for future studies; these will assess the proteins' physiological roles and significance in labellum and inner lateral petals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A De Novo Floral Transcriptome Reveals Clues into Phalaenopsis Orchid Flower Development

Phalaenopsis has a zygomorphic floral structure, including three outer tepals, two lateral inner tepals and a highly modified inner median tepal called labellum or lip; however, the regulation of its organ development remains unelucidated. We generated RNA-seq reads with the Illumina platform for floral organs of the Phalaenopsis wild-type and peloric mutant with a lip-like petal. A total of 43...

متن کامل

Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of ...

متن کامل

Deep Sequencing-Based Analysis of the Cymbidium ensifolium Floral Transcriptome

Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of R...

متن کامل

Molecular Cloning and Functional Analysis of Three FLOWERING LOCUS T (FT) Homologous Genes from Chinese Cymbidium

The FLOWERING LOCUS T (FT) gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense "Qi Jian Bai Mo", Cymbidium goeringii and Cymbidium ensifolium "Jin Si Ma Wei". The three genes contained 618-bp nucleotides with a 531-b...

متن کامل

Organ homologies in orchid flowers re-interpreted using the Musk Orchid as a model

Background and Aims. The presence of novel structures in orchid flowers, including auricles, rostellum and bursicles on the gynostemium and a lobed labellum, has prompted long-standing homology disputes, fuelled by conflicting evidence from a wide range of sources. Re-assessment of this debate using an improved model is timely, following recent phylogenetic insights and on the cusp of a revolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014